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ABSTRACT
Multipath routing is attractive for load-balancing, fault-tolerance,
and security enhancement. However, constructing and maintain-
ing a set of node-disjoint paths between the data source and sink is
non-trivial in a dynamic environment. In this paper, we study the
problem of route recovery in vertex-disjoint multipath routing for
sensor networks with many-to-one traffic patterns. We identify the
sufficient conditions for multipaths to be recovered when the exist-
ing node-disjoint paths are broken, and provide a simple framework
for multipath maintenance. This framework is very efficient in time
when multipath source routing is employed. Our findings can help
to conserve network resource by not launching any route discovery
when the data source realizes that a new route may not exist, to
guide mobile data sources to relocate themselves in order to recon-
struct the new multipaths, and to help newly-deployed data sources
quickly determine whether the required number of multipaths exist
for sure or not and then compute them. The technique proposed in
this paper is a good complement to the classic max-flow algorithm
when node-disjoint multipaths are needed.
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C.2 [COMPUTER-COMMUNICATION NETWORKS]: Network
Architecture and Design—Wireless Communication

General Terms
Algorithms, Design, Reliability, Theory.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MobiHoc’08, May 26–30, 2008, Hong Kong SAR, China.
Copyright 2008 ACM 978-1-60558-073-9/08/05 ...$5.00.

Keywords
Multipath routing, route recovery, multipath determinability, Wire-
less sensor networks

1. INTRODUCTION
In this paper, we consider the problem of route recovery in node-

disjoint1 multipath2 routing for many-to-one sensor networks. We
assume that each data source, a data aggregation node, constructs
and maintains N vertex-disjoint paths to the data sink. Note that
this is a realistic assumption for many sensor network applications.

There exist a number of vertex-disjoint routing protocols that can
be applied to the network we are considering. However, none of
them provides answers to the following questions:

• When one of the N node-disjoint paths is broken due to node
failures or link breakage, is it possible to reconstruct a new
set of N node-disjoint paths? Can we determine the exis-
tence of one more vertex-disjoint path before actually look-
ing for it?

• When the number of existing node-disjoint paths can’t sat-
isfy the requirement (i.e. the number is < N ), is it possible
to provide information guiding a mobile data source to repo-
sition itself such that N vertex-disjoint paths are available at
the new location? Can a newly-deployed data source quickly
figure out the existence of N multpaths?

• What information is needed for a data source to recover from
a path failure? Under what conditions can we compute a new
set of N vertex-disjoint paths based on the information from
neighbors only?

Answering these questions plays a significant role in multipath
maintenance and reconstruction in sensor networks. Particularly, it
can help to save network resource by not launching new route dis-
covery if the data source realizes that no more route might exist; it
can guide a mobile data source to reposition itself to recover from
1We use node-disjoint and vertex-disjoint interchangeably.
2When we say “multipath” we mean “node-disjoint paths”. In ad-
dition, we use “path” and “route” interchangeably.
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a path failure; it can help a newly-deployed data source quickly fig-
ure out the existence of N vertex-disjoint paths to the data sink and
construct them by exploiting the available paths from its neighbors.
Motivated by these considerations and observations, we conduct a
determinability study of one more vertex-disjoint path, trying to
systematically answer the questions mentioned above for many-to-
one sensor networks.

The contributions of this paper are multifold. First, we iden-
tify the sufficient conditions when one more vertex-disjoint path
exists. Second, we provide a maintenance framework for a data
source to recover from route failure when N multipaths are re-
quired from each data source to the data sink. This framework is
particularly efficient for route recovery in source routing. Third, the
technique proposed in this paper is a good complement to the clas-
sic max-flow algorithm when node-disjoint multipaths are needed.
In addition, we show that d + 1 multipaths for a d-dimensional
sensor network might be constructed for free when a geometric
(d + 1) − lateration localization method is employed to local-
ize the network.

Our network model is sketched below. Each data source trans-
mits packets along N vertex-disjoint paths to M sinks for load-
balancing and security enhancement. Note that there is no deter-
ministic relationship between N and M . We only require that each
data source maintains N vertex-disjoint paths to a subset of the
sinks. Therefore all sinks can be treated as one virtual sink. In this
model, data sources could be mobile.

The remaining portion of this paper is organized as follows. Sec-
tion 2 provides a brief overview on major related works. In Section
3, we study the determinability of one more vertex-disjoint path and
report the corresponding sufficient conditions. A N vertex-disjoint
path maintenance framework is proposed in Section 4. A couple
of relevant problems are discussed in Section 5. We conclude our
paper in Section 6 with a discussion on future research.

2. RELATED WORK
In this section, we briefly survey the major related works in

vertex-disjoint path construction and maintenance. Multipath rout-
ing is very prosperous in providing fault-tolerance, load-balancing
[11], and security enhancement [13] in wireless ad hoc and sen-
sor networks. A number of multipath routing protocols have been
proposed and evaluated in literature.

The well-known max-flow algorithm computes N vertex-disjoint
paths in linear time. Ripphausen-Lipa et al. [12] proposes the best
known linear-time algorithm for node-disjoint route construction.
A polynomial time algorithm (O(Nn2)) to find the shortest N
vertex-disjoint paths is reported in [15]. These algorithms are cen-
tralized and are exploited as basic building blocks for [14] and [6].

Distributed vertex-disjoint path computation is mainly studied in
the context of ad hoc networks. In sensor networks, A node-disjoint
parallel multipath algorithm is proposed in [5], where geographic
information is employed for disjoint path discovery. Ref. [7] in-
troduces a distributed N-to-1 multipath discovery protocol by em-
ploying two phases of flooding for security and reliability enhance-
ment. There exist a number of on-demand node-disjoint multi-
path routing protocols such as SMR [4], AOMDV [8] and AODV-
Multipath [16]. These protocols are the extensions of DSR [3] and
AODV [10], the two well-studied routing algorithms for ad hoc
networks.

Split Multipath Routing (SMR) [4] is an on-demand source rout-
ing protocol, in which an intermediate node broadcasts the same
RREQ when it is received from a different neighbor the first time.
No route cache is maintained and therefore intermediate nodes are
not allowed to send RREP back to the source since otherwise the

discovery of maximally disjoint paths at the destination will be pro-
hibited.

AOMDV [8] is an extension to the AODV protocol for com-
puting multiple loop-free and link-disjoint or node-disjoint paths.
This protocol explores an important property of flooding: If each
node is allowed to broadcast only the first copy of the RREQ, then
two copies of the same RREQ arriving at a node from different
neighbors define a set of node-disjoint paths from the source to
this node. AOMDV introduces additional field in RREQ to facili-
tate nodes (intermediate and desnation) to compute the node/link-
disjoint paths to the source after receiving copies of RREQ from
different neighbors.

AODV-Multipath [16] is another extension to AODV for finding
multiple node-disjoint paths. Intermediate nodes are not allowed
to send a RREP back to the source. Also, duplicate RREQ pack-
ets are not discarded at intermediate nodes. Instead, all received
RREQ packets are recorded in a RREQ table. The destination
sends a RREP for all the received RREQ packets. An interme-
diate node forwards a received RREP packet to the neighbor if it
is in the RREQ table. To ensure that nodes do not participate in
more than one route, whenever a node overhears one of its neigh-
bors broadcasting a RREP packet, it deletes that neighbor from its
RREQ table. Because a node cannot participate in more than one
route, the discovered paths must be node-disjoint.

A qualitative comparison of SMR, AOMDV, and AODV-Multipath
is reported in [9]. Simulation results indicate that AOMDV achieves
the best performance in high mobility, while AODV-Multipath per-
forms better at lower mobility but higher node density, and SMR
performs the best at low node density. The limitations of these
protocols are studied in [6], which states that the on-demand mul-
tipath routing protocols mentioned above can not find out all ex-
isting node-disjoint paths. A theoretical framework showing the
equivalence of on-demand multipath discovery and flow network
assignment is established to guarantee the on-demand discovery of
an arbitrary number of node-disjoint paths between a pair of nodes
as long as they exist. A protocol integrating this theoretical frame-
work with DSR to find out node-disjoint paths is also proposed
in [6]. Note that Multipath maintenance in these protocols is equiv-
alent to a new multipath discovery, which means that a RREQ from
the source is initiated whenever needed.

Our work is different from all these surveyed in this section. we
intend to provide a low-cost method to figure out whether there ex-
ists one more vertex-disjoint path, to provide information guiding
the relocation of a mobile node such that more vertex-disjoint paths
can be established, and to identify sufficient conditions for the exis-
tence of more vertex-disjoint paths. To our best knowledge, no ex-
isting work considers any of these challenges. Our technique can be
employed for the recovery of vertex-disjoint paths, and therefore,
can be applied together with any of the protocols for multipath con-
struction. In addition, this paper provides sufficient conditions for
a node to figure out whether one more vertex-disjoint path can be
computed when one of the existing vertex-disjoint paths is broken.

3. DETERMINABILITY STUDY
In this section, we derive the sufficient conditions when one more

vertex-disjoint path exists for a node S. For this purpose we intro-
duce the Flip and the Omvdp algorithms first.

3.1 Induced Path

DEFINITION 3.1. Given a source node and a destination node,
a paired vertex-disjoint path set is the set of vertex-disjoint paths
between these two nodes.
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DEFINITION 3.2. An induced path is a path derived from two
paired vertex-disjoint path sets, noted as the basic set and the ref-
erence set, respectively, with each starting at different source node
and both ending at the same destination node. The induced path
starts from the source node of the basic set, partly overlaps one
and only one path in the basic set first, then overlaps at most one
path in the reference set, and finally ends at the common destination
node.

In the following, we introduce an algorithm termed as Flip(First
Level Induced Path) to compute an induced path. The mathematic
notations utilized by Flip are listed in Table 1:

S S is the source node of the basic set.
P P is the source node of the reference set.
T T is the destination node.
CS CS = {ST1 , ST2 , · · · , STi

, · · · , STNB
}, the basic set,

where NB is the number of paths and 1 ≤ i ≤ NB .
CP CP = {PT1 , PT2 , · · · , PTj

, · · · , PTNR
}, the reference set,

where NR is the number of paths and 1 ≤ j ≤ NR.
STi

STi
= {si0 , si1 , · · · , siBi

}, the ith path in the basic set,
where si0 = S, siBi

= T and Bi is the number of vertices.
PTj

PTj
= {pj0 , pj1 , · · · , pjRj

}, the jth path in the reference set,
where pj0 = P , pjRj

= T and Rj is the number of vertices.

Table 1: Notations adopted by Flip.

DEFINITION 3.3. Xi = {sik |∃j, s.t.sik ∈ PTj , 0 ≤ k ≤ Bi}
is STi ’s ordered intersection set, where a node sim is before sin

in Xi if and only if sim is closer to S than sin in hop-count.

Note that the ordered intersection set Xi of STi contains the
nodes at which STi intersects some paths in CP . All nodes in Xi

are ordered based on their distances in hop-count to S. Similarly
we define PTj ’s ordered intersection set, denoted by Yj , which con-
tains all the nodes at which PTj crosses some paths in CS . All
nodes in Yj are ordered with increasing distances to P .

DEFINITION 3.4. If a node is the lth element of Xi, then STi ’s
subpath from S to this node is called the lth level subpath.

DEFINITION 3.5. A node is PTj ’s effective partition node if
and only if it is in both PTj and one of the paths in the basic set,
such that PTj ’s subpath from this node to T vertex-disjoints all the
other paths in the basic set.

DEFINITION 3.6. PTj ’s subpath from an effective partition node
to T is called an effective residual path.

S

T

P

a1

a3

b1

a2

b2 ST1

PT1
PT2

ST2

a4
a5

PT3

(a)

ST b1

ST1

PT2

(b)

Figure 1: (a) A example to illustrate the definitions of ordered
intersection set and effective partition node. (b) An induced
path found by Flip for (a).

Note that an effective partition node of PTj must belong to one
and only one ordered intersection set Xi. Each intersection node

belongs to two paths, with one from the basic set, and one from
the reference set. Fig. 1(a) gives an example to illustrate these
definitions. We have X1 = {a1, b1, a4, b2, a5}, X2 = {a2, a3},
Y1 = {a1, a2, a3, a4, a5}, Y2 = {b1, b2}, and Y3 = ∅. The nodes
a4 and a5 are PT1 ’s effective partition nodes while b1 and b2 are
PT2 ’s effective partition nodes. Note that PT3 does not have any
effective partition node.

Now we are ready to propose the Flip algorithm. The inputs to
Flip are the basic set CS and the reference set CP . The output is
an induced path that is either a path in the basic set, or a path com-
posed of a minimum level subpath of the basic set and an effective
residual path of the reference set.

Algorithm Flip

(1) Construct the ordered intersection set for each path in CS ;
(2)
if ∃i, s.t. Xi = ∅ then

STi is the induced path
STOP

end if
(3) Find the effective partition nodes for each path in CP ;
(4) Set l = 1
(5)
if ∃i, s.t. STi ’s lth level subpath joints an effective residual path
of PTj then

The induced path is the concatenation of these two subpaths
STOP

end if
(6) l = l + 1
(7) Go to (5)

The basic idea of Flip is sketched as follows. If there exists a
path STi ∈ CS that vertex-disjoints all paths in CP , output this
path. Otherwise, construct a path from CS and CP in the following
way: find the smallest l such that the lth element of the ordered
intersection set of some STi , denoted by sl

i, is an effective partition
node of some PTj . Then output the concatenation of the lth level
subpath of STi and the effective residual path of PTj starting from
sl

i. For example, the induced path found by Flip for Fig. 1(a) is
shown in Fig. 1(b). Note that if a connectivity matrix is employed
to store the graph derived from the basic set and the reference set,
the time complexity of Flip is O(n), where n is the total number of
vertices in the graph.

Note that an induced path outputted from Flip contains nodes
and edges in CS and CP only. The following theorem indicates
that there must exist such a path. It also ensures that Flip will stop
and return an induced path.

THEOREM 3.1. There must exist at least one induced path for
the given basic set CS and reference set CP when P is not in any
of the paths in CS and S is not in any of the paths in CP .

PROOF. If ∃STi ∈ CS , s.t. STi vertex-disjoints all paths in CP ,
then STi is an induced path according to the Def. 3.2.

Otherwise, for ∀STi , there must exist a PTj , s.t. STi

⋂
PTj 6= ∅.

According to Def. 3.5 and Def. 3.6, there must exist an effective
partition node am and an effective residual path Pm for PTj start-
ing from am because the number of vertices in PTj is finite. With-
out loss of generality, we assume that am is in STi . Thus, a path,
which is composed of Pm and STi ’s subpath from S to am, is an
induced path according to Def. 3.2.
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3.2 Constructing One More Vertex-Disjoint
Path

In Subsection 3.1, we have proposed the Flip algorithm to find
out an induced path given the basic set and reference set. In this
subsection, we will study the condition under which the source
node can find out one more vertex-disjoint path to the sink node,
and will report the method to construct these paths.

DEFINITION 3.7. If a node has N known vertex-disjoint paths
to the sink node, it is called a N -credit node.

We will study the condition to guarantee the existence of the N th
path for a (N − 1)-credit node. An algorithm termed as One More
Vertex-Disjoint Path (Omvdp) is proposed to compute N vertex-
disjoint paths for the (N − 1)-credit node S when there exist a
N -credit node P , such that P is not in any of S’s paths and S
is not in any of P ’s paths, and a path SP between S and P that
vertex-disjoints all the known vertex-disjoint paths from S and P
to the sink node T . The mathematic notations for Omvdp are listed
in Table 2:

A A = {ST1 , ST2 , · · · , STi
, · · · , STN−1}, the set of

vertex-disjoint paths for the (N − 1)-credit node S.
B B = {PT1 , PT2 , · · · , PTj

, · · · , PTN
}, the set of

vertex-disjoint paths for the N -credit node P .
NewA NewA = {new1, new2, · · · , newN}, the set of

vertex-disjoint paths constructed by Omvdp for S.

Table 2: Notations utilized by Omvdp.

The inputs to Omvdp are A and B, and the output is NewA.
An example to illustrate Algorithm Omvdp is shown in Fig. 2,

where Fig. 2(a) is the input graph containing A, B, and SP , and
Fig. 2(h) is the resultant graph showing the N (here N = 4) vertex-
disjoint paths found by Omvdp. The procedure of constructing the
N = 4 vertex-disjoint paths for S in Fig. 2(a) is detailed as fol-
lows. Note that we use {STi , x, PTj} to represent an induced path
derived from STi and PTj with x being the switching point. In
other words, the induced path {STi , x, PTj} contains the subpath
from S to x in STi and the subpath from x to T in PTj .

Algorithm Omvdp

(1)
CS = A
CP = B
NewA = ∅
(2)
if ∃j, s.t. PTj ∈ CP vertex-disjoints all the paths in CS and
NewA then

(2.1) NewA = NewA

⋃
CS

⋃{SP ||PTj}, where || stands
for concatenation
(2.2) STOP

end if
(3)
if CS = ∅ then

(3.1) PFlip = SP ||PTj , ∀PTj ∈ CP

else
(3.2) Employing Flip to find an induced path PFlip with CS

and CP being the basic set and the reference set, respectively.
Without loss of generality, we assume that PFlip is derived
from STi ∈ CS and PTj ∈ CP . If PFlip is derived from CS

only, which means that PFlip ∈ CS , set PTj = ∅.
end if
(4)

if PFlip vertex-disjoints all the paths in NewA then
(4.1) NewA = NewA

⋃{PFlip}
if CS 6= ∅ then

(4.2) CS = CS \ {STi}
end if
(4.3) CP = CP \ {PTj}

else
(4.4) Temp = {newh|newh

⋂
PFlip 6= ∅, newh ∈ NewA, 1 ≤

h ≤ NNewA}, where NNewA is the number of elements in
NewA.
(4.5) Employing Flip to find an induced path Ptemp with Temp
and {PFlip} being the basic set and the reference set, respec-
tively.
(4.6) NewA = NewA

⋃{Ptemp} \ {newt}, where newt ∈
Temp is the path employed to derive Ptemp.
(4.7) CS = CS

(4.8) CP = CP

⋃{PTk}\{PTj}, where PTk ∈ B is the path
employed to derive newt, and PTj ∈ B is the path employed
to derived PFlip.
(4.9) Go to (3)

end if
(5)
if SP is included in one of the paths in NewA then

(5.1) STOP
else

(5.2) Go to (2)
end if

(a) Fig. 2(a) is the input to Omvdp, where A = {ST1 , ST2 , ST3}
, B = {PT1 , PT2 , PT3 , PT4}, and SP vertex-disjoints all paths in
A and B. Initially NewA = ∅, CS = A and CP = B.

(b) Go to step (2) then (3). Compute PFlip = {ST1 , b3, PT2}
(step (3.2)). This PFlip vertex-disjoints all the paths in the cur-
rent NewA. In step (4), update NewA, CS , and CP : NewA =
{{ST1 , b3, PT2}} (shown in Fig. 2(b)), CS = {ST2 , ST3} and
CP = {PT1 , PT3 , PT4}.

(c) Go to step (2) then (3). Compute PFlip = {ST2 , c2, PT3}
(step (3.2)). This PFlip vertex-disjoints all the paths in the cur-
rent NewA. In step (4), update NewA, CS , and CP : NewA =
{{ST1 , b3, PT2}, {ST2 , c2, PT3 }} (shown in Fig. 2(c)), CS =
{ST3} and CP = {PT1 , PT4}.

(d) Go to step (2) then (3). Compute PFlip = {ST3 , d1, PT4}
(step (3.2)). This PFlip vertex-disjoints all the paths in the cur-
rent NewA. In step (4), update NewA, CS , and CP : NewA =
{{ST1 , b3, PT2}, {ST2 , c2, PT3}, {ST3 , d1, PT4}} (shown in Fig. 2(d)),
CS = ∅ and CP = {PT1}.

(e) Go to step (2) then (3). Since CS = ∅, PFlip = SP ||PT1

(step (3.1)). This PFlip joints all the paths in the current NewA

at a1, a2, and a3, as shown in Fig. 2(e). Therefore in step (4),
Temp = {{ST1 , b3, PT2}, {ST2 , c2, PT3}, {ST3 , d1, PT4}}. Com-
pute Ptemp = {ST1 , a3, PT1} (step (4.5)), which is derived from
newt = {ST1 , b3, PT2}, as shown in Fig. 2(f). Update NewA,
CS , and CP accordingly: NewA = {{ST1 , a3, PT1}, {ST2 , c2,
PT3}, {ST3 , d1, PT4}}, CS = ∅ and CP = {PT2}.

(f) Go to step (3). Since CS = ∅, PFlip = SP ||PT2 (step (3.1)).
This PFlip joints two paths in the current NewA at b1 and b2, as
shown in Fig. 2(f). Go to step (4), we have Temp = {{ST2 , c2,
PT3}, {ST3 , d1, PT4}}. Compute Ptemp = {ST2 , b2, PT2} (step
(4.5)), which is derived from newt = {ST2 , c2, PT3}, as shown
in Fig. 2(g). Update NewA, CS , and CP accordingly: NewA =
{{ST1 , a3, PT1}, {ST2 , b2, PT2}, {ST3 , d1, PT4}}, CS = ∅ and
CP = {PT3}.

(g) Go to step (3). Since CS = ∅, PFlip = SP ||PT3 (step (3.1)).
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Figure 2: An example to illustrate Algorithm Omvdp for con-
structing N vertex-disjoint paths

This PFlip joints one path in the current NewA at c1, as shown in
the Fig.2(g). Go to step (4). We have Temp = {{ST3 , d1, PT4}}.
Compute Ptemp = {ST3 , c1, PT3} (step (4.5)). This Ptemp is de-
rived from newt = {ST3 , d1, PT4}, as shown in Fig. 2(h). Up-
date NewA, CS , and CP accordingly: NewA = {{ST1 , a3, PT1},
{ST2 , b2, PT2}, {ST3 , c1, PT3}}, CS = ∅ and CP = {PT4}.

(h) Go to step (3). Since CS = ∅, PFlip = SP ||PT4 (step (3.1)).
This PFlip vertex-disjoints all the paths in the current NewA, as
shown in Fig. 2(h). In step (4), update NewA, CS , and CP : NewA =
{{ST1 , a3, PT1}, {ST2 , b2, PT2}, {ST3 , c1, PT3}, SP ||PT4}, CS =
∅ and CP = ∅. Go to step (5) and STOP.

In the following, we will prove that Algorithm Omvdp stops in
finite number of steps, and it computes exactly N vertex-disjoint
paths.

LEMMA 3.1. If Ptemp is found in step (4.5) of Omvdp, then
Ptemp is derived from PFlip.

PROOF. PFlip joints all the paths in Temp. Therefore, there
dose not exist an induced path that is derived from a path in Temp
only.

LEMMA 3.2. Assuming that PFlip is derived from PTj ∈ CP ,
then the intersections of PFlip and the paths in Temp are all in
PTj .

PROOF. If PFlip is derived from Omvdp’s step (3.1), the claim
is true. Now we assume that PFlip is derived from STi ∈ CS in

step (3.2). For ∀ newt ∈ Temp, without loss of generality, we
assume that newt is derived from S′Ti

∈ CS and P ′Tj
∈ CP .

We claim that STi does not intersect newt. This can be proved
by the following two observations. First, STi

⋂
S′Ti

= ∅. Second,
if ∃x ∈ STi s. t. x ∈ (P ′Tj

⋂
newt), which means x is in the ef-

fective residual path of P ′Tj
employed to construct newt. However,

based on the definition of effective residual path, (P ′Tj

⋂
newt) in-

tersects S′Ti
only. Therefore STi can not intersect newt.

LEMMA 3.3. All the paths in NewA vertex-disjoint all the paths
in CS in step (4).

PROOF. Any path in NewA obtained by step (4.1) vertex-disjoints
CS since the path employed to derive the path in NewA is removed
from CS according to step (4.2).

CS does not change when Ptemp is derived in step (4.5), as
shown in step (4.7). Ptemp is derived from PFlip, according to the
Lemma 3.1. Therefore Ptemp vertex-disjoints all the paths in CS

except STi , which is employed to construct PFlip. According to
Lemma 3.2, Ptemp

⋂
STi = ∅. Therefore, Ptemp vertex-disjoints

all the paths in CS .

From Lemma 3.3 and steps (4.1) and (4.6) in Omvdp, we con-
clude that the number of vertex-disjoint paths, which are found
from steps (3) and (4), is determinable. This number is increased
by one when step (4.1) is applied, and it remains unchanged when
other steps are employed. Next we will prove that the loops con-
taining steps (3) and (4) must stop in finite number of steps.

LEMMA 3.4. Any loop containing steps (3) and (4) in Algo-
rithm Omvdp will exit in finite number of steps.

PROOF. We assume that PFlip is derived from PTj ∈ CP , and
therefore Ptemp is also derived from PTj according to Lemma 3.2
and Lemma 3.1. We further assume that Ptemp is derived from
newt ∈ NewA , and newt is derived from S′Ti

∈ CS and P ′Tj
∈

CP . Then, Ptemp is derived from S′Ti
and PTj . Assuming the

effective partition node, which was employed to construct newt, is
the lth element in X ′

i , the ordered intersection set of S′Ti
, and the

effective partition node employed to construct Ptemp, is the l′th
element in X ′

i , then l > l′. Since the total number of nodes in
NewA and A are finite, the number of Ptemps, which are found
by step (4.5), must be finite. Therefore any loop containing steps
(3)and (4) must exit after finite numbers of steps.

In the next, we will prove that Omvdp can return exactly N
vertex-disjoint paths.

THEOREM 3.2. Algorithm Omvdp can return exactly N vertex-
disjoint paths for a (N−1)-credit node S if there exists a N -credit
node P and a path SP between S and P such that SP vertex-
disjoints all the known (N −1) paths from S and the N paths from
P to the sink node T .

PROOF. When Algorithm Omvdp terminates, NewA contains
the vertex-disjoint paths for S. Initially |NewA| = 0. We will
study how NewA is updated in Algorithm Omvdp.

First, if step (2.1) is executed before the algorithm goes to steps
(3) and (4), Omvdp terminates with |NewA| = N .

Now assume the algorithm does not execute step (2.1) initially.
Then it will go to step (3). Notice from step (4) that when CS

becomes empty, it will remain to be empty. Therefore the algorithm
will execute steps (3.2) and (4) first, and it will loop to execute steps
(3.2) and (4) until the condition in step (2) holds true or CS = ∅.
Notice from steps (4.1) and (4.2), step (4) maintains the following
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invariant: |NewA|+|CS | = |A| = N−1 when looping. Therefore
if the algorithm goes to step (2.1), it will terminate with |NewA| =
N .

If the algorithm does not go to step (2.1) to terminate, it will loop
to execute steps (3.2) and (4) until CS = ∅. From Lemma 3.4, this
loop must exit in finite number of steps. When this loop exists,
|NewA| = N − 1 based on the invariant mentioned above. Now
the algorithm will go to steps (3.1) and (4). Note that the algorithm
will never go to steps (3.2) and (4) again since step (4) does not
place any path back to CS . Therefore it will loop to execute steps
(3.1) and (4) until the condition at step (5) holds true. Again from
Lemma 3.4, this loop must exit in finite number of steps. Note
that this loop terminates only when step (4.1) is executed, and it
terminates at step (5) since SP is already included in one of the
paths in NewA (from step (4.1)). Also note that before the loop
exits, |NewA| = N − 1 (see step 4.6). Therefore |NewA| = N
when the algorithm terminates.

THEOREM 3.3. Algorithm Omvdp stops in finite number of steps.

PROOF. From Lemma 3.4 and the proof of Theorem 3.2, Algo-
rithm Omvpd must stop in finite number of steps.

In the worst case, Algorithm Omvdp stops in O(n2) time, where
n is the number of vertices that are both in A, B.

3.3 Determinability Study for Constructing
One More Vertex-Disjoint Path

As we discussed in section 5, to reduce the complexity, it is im-
portant to know the number of vertex-disjoint paths before the dis-
covery of these paths. Here, if we can determine whether there
exists one more vertex-disjoint path for a data source, the effort of
actually finding the N th path could be saved when at most N − 1
paths exist. In this section, we propose sufficient conditions based
on Algorithm Omvdp when one more vertex-disjoint path exists.
We are going to adopt the following notations, as illustrated in Ta-
ble 3.

A A = {ST1 , ST2 , · · · , STi
, · · · , STN−1}, the set of

vertex-disjoint paths for the (N − 1)-credit node S.
B B = {PT1 , PT2 , · · · , PTj

, · · · , PTM
}, the set of

vertex-disjoint paths for the M -credit node P .
SP A path between S and P .
AB AB = {STi

|∃PTj
∈ B, s.t. STi

⋂
PTj

6= ∅, STi
∈ A},

the set of paths in A that joint at least one path in B.
BA BA = {PTj

|∃STi
∈ A, s.t. PTj

⋂
STi

6= ∅, PTj
∈ B},

the set of paths in B that joint at least one path in A.

Table 3: Notations to derive the sufficient condition.

3.3.1 SP Vertex-Disjoints All Paths in A ∪B

First, we will propose a sufficient condition for a (N − 1)-credit
node to be augmented to N -credit when SP vertex-disjoints all
paths in A ∪ B. It also means that P is not in any of S’s paths
and S is not in any of P ’s paths

Based on Algorithm Omvdp and Theorem 3.2, we obtain the
following theorem:

THEOREM 3.4. Given a (N − 1)-credit node S, a M -credit
node P , and a path SP between S and P that vertex-disjoints all
the paths in both A and B. If M > |BA| or |AB | < |BA|, S is a
N -credit node.

PROOF. If M > |BA|, there exists at least one path in B, de-
noted by PTj , that vertex-disjoints all paths in A. Then we can

compute the N -th vertex-disjoint path for S by concatenating SP

and PTj , as shown in Algorithm Omvpd’s step (2.1).
When |AB | < |BA|, the construction procedure of Algorithm

Omvdp yields (|AB |+1) vertex-disjoint paths for S when AB and
BA are the inputs to Omvdp according to the Theorem 3.2. Any
path in A \ AB vertex-disjoints all the paths in both AB and B.
Therefore, the number of vertex-disjoint paths for S is N .

Note that Algorithm Omvdp will also return N vertex-disjoint
paths for S if A and B are used as the inputs because all the paths
in A \ AB are the 0th-level induced paths and they will be found
earlier than the others.

Theorem 3.4 provides a sufficient condition for a (N − 1)-credit
node to be augmented to a N -credit node. Note that this condition
is not necessary. As shown in Fig. 3(b), Algorithm Omvdp yields
N vertex-disjoint paths for the S in Fig. 3(a), where N = 3, M =
2, and |AB | = |BA| = 2. Another example is reported in Fig. 4,
for which Algorithm Omvdp computes N vertex-disjoint paths for
the S in Fig 4(a), where N = 4, M = 2, and 3 = |AB | > |BA| =
2. Two more examples are illustrated in Fig. 5(a) and Fig. 5(b),
with |AB | = |BA| = 2 and 2 = |AB | > |BA| = 1, respectively.
For these two examples, it is impossible to find out another vertex-
disjoint path for S.

a1

a2

a3

S

T

b1

P

PT1

PT2

ST1

ST2 SP

(a)

a2 S
T

P

PT1

PT2

ST1

ST2

SP

(b)

Figure 3: An example of N vertex-disjoint paths found by the
Algorithm Omvdp when |AB | = |BA|, where N = 3.
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ST1
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ST3
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T

P

PT1

PT2

ST1

ST2

SP

a3

ST3
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Figure 4: An example of N vertex-disjoint paths found by the
Algorithm Omvdp when |AB | > |BA|, where N = 4.
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Figure 5: Examples showing that no more vertex-disjoint path
can be found for S. (a) |AB | = |BA|, (b) |AB | > |BA|.
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3.3.2 SP Joints At Least One Path In A ∪B

Algorithm Omvdp is dependent on the existence of SP that vertex-
disjoins all the paths in both A and B. As shown in Theorem 3.4,
this is suffiecient but not necessary. Therefore a naive question to
ask is: can a (N − 1)-credit node S be augmented to N -credit
given a M -credit node P with M > |BA| or |AB | < |BA|? In
the following, we will study this question by considering different
cases.

Case 1. There exists no SP that does not pass T , as shown in Fig. 6.

S

T

P

PT3

PT2

ST1

ST2

PT1

PT4

ST3

Figure 6: The SP without the T does not exist.

LEMMA 3.5. In this case, it is impossible to construct N vertex-
disjoint paths for S from A and B.

PROOF. In this case, S contains only N−1 neighbors that could
connect to any path in A ∪B. Therefore the claim is true.

Case 2. There exist SP ’s without passing T , but each connects to
some path in A ∪ B. We are going to consider the following four
sub-cases:

1. S is not in any of P ’s paths, and P is not in any of S’s paths.

2. P is in one of S’s paths, but S is not in any of P ’s paths.

3. S is in one of P ’s paths, but P is not in any of S’s paths.

4. S is in one of P ’s paths, and P is in one of S’s paths.

Subcase 2.1. S is not in any of P ’s paths, and P is not in any of
S’s paths.

Consider all the nodes from S to P in the path SP . Let P ′ be
the first node in this path that joints either a path in A, or a path
in B. Without loss of generality, we assume the path in A (B) that
intersects SP at P ′ is ST1 (PT1 ). Note that none of the intermediary
nodes from S to P ′ resides in any path in A and B.

LEMMA 3.6. If P ′ joints a path PT1 in B, then there exist N
vertex-disjoint paths for a (N − 1)-credit node S if P ′ is closer to
P than any other node through which PT1 intersects a path in A.

PROOF. We prove this lemma by constructing M virtual vertex-
disjoint paths from P ′ to T . The construction procedure is sketched
as follows. We first replace P with M − 1 virtual nodes P2, · · · ,
PM−1, PM , with Pi connecting to PTi for i = 2, 3, · · · , M . Then
we introduce M − 1 virtual edges connecting P ′ to each Pi for
i = 2, 3, · · · , M . Now we obtain M − 1 virtual vertex-disjoint
paths from P ′ to T , denoted by P ′T2 , · · · , P ′TM

. We construct the
M th vertex-disjoint path from P ′ to T with the subpath from P ′ to
T in PT1 . Denote this path by P ′T1 . Denote the set of M (virtual)
vertex-disjoint paths from P ′ to T by B′. With B′, SP ′ and A
as inputs to Algorithm Omvdp, we can obtain a set of N vertex-
disjoint paths for S. Denote this set by A′.

We claim that at most one path in A′ contains a virtual node and
virtual edge. This is true because Algorithm Omvdp utilizes Flip
to compute an induced path, which starts from a path STi ∈ A and
switch to another path P ′Tj

∈ B′ at the intersection node of STi

and P ′Tj
. And no virtual node and edge will be included in any

induced path since the virtual part of any P ′Tj
always comes before

the intersection node of P ′Tj
and STi ∈ A. Therefore the only path,

which possibly contains a virtual node and edge, is the path derived
from SP ′ . If there exists such path, we replace the virtual node with
P and virtual edge with the path from P ′ to P in PT1 .

An example to illustrate the construction procedure in the proof
of Lemma 3.6 is shown in Fig. 7.

S

T

P

PT3

PT2

ST1ST2

PT1

PT4

ST3

P'

a2
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a5

SP

(a)
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T

P'T3

P'T2

ST1ST2

P'T1

P'T4

ST3

P'

P2P3
P4

SP'

(b)

Figure 7: SP first joints PT1 at P ′, and P ′ is closer to P than
any other node of PT1 that intersects with a path in A.

If there exists a node in PT1 that intersects a path in A and this
node is before P ′ in the path PT1 , we may not be able to find out N
vertex-disjoint paths for a (N − 1)-credit node S. An example is
illustrated in Fig. 8, where 3 vertex-disjoint paths for S in Fig. 8(a)
can be computed, but the 3rd vertex-disjoint path does not exist for
the figure shown in Fig. 8(b). This observation helps us to derive
the following lemma:

LEMMA 3.7. The existence of N vertex-disjoint paths for a (N−
1)-credit node S is not guaranteed if there always exists a node in
PT1 that intersects a path in A and is closer to P than P ′.

ST

P

PT1

PT2

ST1

ST2

SPa1

PT3

(a)

S
T

P

PT1

PT2

ST1

ST2

SP

a1PT3

(b)

Figure 8: SP joints PT1 first, but there exists a node in PT1 that
intersects a path in A and is closer to P than P ′.

If all SP ’s joint ST1 first, the existence of N vertex-disjoint paths
for a (N − 1)-credit node S is not guaranteed, as illustrated by the
examples given in Fig. 9.

LEMMA 3.8. The existence of N vertex-disjoint paths for the
(N − 1)-credit node S is not guaranteed if all SP ’s joint a path in
A first.
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PT2

ST1

PT1

SP

(a)

ST

P

PT2

ST1

PT1

SP

(b)

Figure 9: All SP ’s joint the paths in A first. (a) There ex-
ist N = 2 vertex-disjoint paths for S; (b) The second vertex-
disjoint path for S does not exist.

Subcase 2.2. P is in one of S’s paths, and S is not in any of the
P ’s paths.

In this case, the existence of N vertex-disjoint paths for a (N −
1)-credit node S can not be guaranteed, as illustrated by the two
examples in Fig. 10. Therefore, we have

LEMMA 3.9. There existence of N vertex-disjoint paths for the
(N − 1)-credit node S is not guaranteed when P is in one of the
paths in A.

S
T

P
PT2

ST1

PT1

SP

(a)

ST
P

PT2

ST1

PT1

SP

(b)

Figure 10: The node P is in one of the S’s paths. (a) There
exist N = 2 vertex-disjoint paths for S; (b) The second vertex-
disjoint path for S does not exist.

Subcase 2.3. S is in one of P ’s paths, and P is not in any of S’s
paths.

Without loss of generality, we assume that S is in PT1 . Let Y1

denote the ordered intersection set of PT1 .

LEMMA 3.10. There exist N vertex-disjoint paths for the (N−
1)-credit node S if S is the first node in Y1.

PROOF. Let SP be the subpath from S to P in PT1 . Let b be
the second element in the ordered set Y1. If there exists a node a
such that a ∈ PT1 , a /∈ Y1, and a is between S and b in PT1 ,
then we can create a virtual edge connecting P to a. Let P ′T1 be
the path concatenated from the virtual edge and the subpath of PT1

from a to T . The construction of P ′T1 is illustrated in Fig. 11(a)
and Fig. 11(b). Now we use P ′T1 to replace PT1 in B to obtain
B′. Then SP vertex disjoints all paths in A and B′. By applying
Algorithm Omvdp to A and B′, we obtain the set A′ containing N
vertex-disjoin paths for S. Note that the virtual edge exists in at
most one of the paths in A′, and if it exists, SP exists too in the
same path. Therefore we can replace the subpath containing the
virtual edge and SP with PT1 ’s subpath from S to a.

If such an a does not exist and PT1 ’s subpath from S to T com-
pletely overlaps a path, denoted as ST1 , in A, then ST1 vertex-
disjoints all the paths in B except for PT1 . Now we remove ST1

from A to obtain A′ and remove PT1 from B to obtain B′. Since
|A′| = |A| − 1 = N − 2, |B′| = |B| − 1 = M − 1, and SP

vertex-disjoints all paths in A′ and B′, from Theorem 3.4, there
exists N − 1 vertex-disjoint paths for S that can be constructed
from SP , A′, and B′ only. Since the removed ST1 vertex-disjoints

all paths in B and A, it vertex-disjoints all the N − 1 paths con-
structed for S. Therefore, we can include this path as the N th path
of S to T .

If such an a does not exist and PT1 partly overlaps a path in A
starting with S. Without loss of generality, let ST2 be the path in A
that partially overlaps PT1 and the end node of this overlap is c, as
shown in Fig. 11(c). We add a virtual edge from c to P that vertex-
disjoints all the paths in A and B, as shown in Fig. 11(d). We
replace PT1 with the concatenation of the virtual edge and PT1 ’s
subpath from c to T to obtain B′. Since |B′| = |B| = N , and
SP vertex-disjoints all paths in A and B′, from Theorem 3.4, there
exists N vertex-disjoint paths for S that can be constructed from
SP , A, and B′. We claim that the virtual edge dose not exist in
any of the above constructed N paths. The only possible path that
contains the virtual edge is derived from SP , and this possible path
must joint the path derived from ST2 , which is inconsistent with
the fact that the N newly-constructed paths are vertex-disjoint.
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Figure 11: S is closer to P than all nodes in Y1, the ordered
intersection set of PT1 .

LEMMA 3.11. The existence of the (N + 1)th vertex-disjoint
path of S is not guaranteed if S is the first node in Y1.

PROOF. For the figure shown in Fig. 11(a), where S is the only
intersection node of PT1 , we divide PT1 into two subpaths, with
one from S to P labeled as SP , and the other from S to T labeled
as STN . Then the original problem is transformed to the problem
where S has N vertex disjoint paths and P has M − 1 vertex-
disjoint paths. The existence of the (N + 1)th vertex-disjoint path
of S can’t be guaranteed based on Theorem 3.4 and the examples
following Theorem 3.4.

When S is not the first node in the ordered set Y1, the existence
of N vertex-disjoint paths for S can’t be guaranteed, as illustrated
by the two examples in Fig. 12. Therefore we have

LEMMA 3.12. The existence of N vertex-disjoint paths is not
guaranteed when S is not the first node in the ordered intersection
set Y1.

Note that in Fig. 12(b), there exist N + 1 vertex-disjoint paths
for S but Fig. 12(a) does not have N vertex-disjoint paths for S for
N = 3. Therefore we have

LEMMA 3.13. The existence of the (N + 1)th vertex-disjoint
path is not guaranteed when S is not the first node in the ordered
intersection set Y1.
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Figure 12: S is not the first node in PT1 ’s intersection set Y1.
Here N = 3. (a) There does not exist N vertex-disjoint paths
for S; (b) There exist N vertex-disjoint paths for S.

Subcase 2.4. S is in one of P ’s paths, and P is in one of S’s paths.
Without loss of generality, we assume that S is in PT1 and P is

in ST1 .

LEMMA 3.14. The existence of N vertex-disjoint paths is not
guaranteed if S is in one of P ’s paths and P is in one of S’s paths.

We use the examples illustrated in Fig. 13 to demonstrate the
correctness of this lemma. Note that it is clear that there does not
exist N vertex-disjoint paths for S in Fig. 13(a), but there exist N
vertex disjoint paths for the S in Fig. 13(b), where N = 3. Note
that Fig. 13(b) is drawn in 3D, and only the black nodes represent
the intersections.
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Figure 13: S is in one of P ’s paths, and P is in one of the S’s
paths. Here N = 3. (a) S does not have N vertex-disjoint
paths; (b) S has N vertex disjoint paths.

LEMMA 3.15. The existence of the (N + 1)th vertex-disjoint
path is not guaranteed if S is in one of P ’s paths and P is in one
of S’s paths.

PROOF. Again we use the two examples illustrated in Fig. 13
to demonstrate the correctness of this lemma. There does not exist
N vertex-disjoint paths for S in Fig. 13(a), but there exist N +
1 vertex-disjoint paths for S in Fig. 13(b). Therefore the lemma
holds.

From the above analysis, we realize that under certain condi-
tions, a (N −1)-credit node S can be augmented to N -credit when
SP does not vertex-disjoint all paths in A and B. To summarize
these conditions, we introduce the concept of effective information
node first.

DEFINITION 3.8. Given a (N − 1)-credit node S and a M -
credit node P , such that P is not in any of S’s paths and S is not
in any of P ’s paths, a node D is S’s effective information node if
one of the following two conditions hold: (1) D is P ; (2) D is in
PTj for ∀j ∈ {1, 2, · · · , M} such that D is closer to P than any
node in Yj .

With the definition of the effective information node, the results
reported in Theorem 3.4 and Lemmas 3.5-3.15 can be summarized
by the following theorem:

THEOREM 3.5. Given a (N − 1)-credit node S, a M -credit
node P , such that P is not in any of S’s paths and S is not in
any of P ’s paths, and a path SP . If SP joints A and B first in an
effective information node, and M > |BA| or |AB | < |BA|, then
S is a N -credit node.

Note that Theorem 3.5 states that the sufficient conditions for S
to be N -credit include: (i) ∃P , such that P is not in any of S’s paths
and S is not in any of P ’s paths; (ii) ∃SP that joints A and B first
in an effective information node; (iii) M > |BA| or |AB | < |BA|.

THEOREM 3.6. If A, B, and SP satisfy the sufficient conditions
mentioned above, the maximum number of vertex-disjoint paths
that can be found for S is N .

PROOF. The number of paths that starts from S is N under the
two conditions. Therefore, the maximum possible number of vertex
disjoint paths is N .

4. VERTEX-DISJOINT ROUTE RECOVERY
FRAMEWORK

In a large scale network, it is hard and expensive for an average
node to obtain the global information. Therefore, we concentrate
on the local and distributed solution. Our route recovery frame-
work contains two phases: checking and reconstructing. In the first
phase, whether there exists N vertex-disjoint paths for a node is de-
termined based on some sufficient conditions. In the second phase,
the N vertex-disjoint paths to the sink are reconstructed. Here,
the motivation and idea is that the complexity of checking phase
is less than the complexity of reconstructing phase, such that the
complexity of multipaths reconstruction can be reduced comparing
with repeating the reconstructing phase.

4.1 Checking Phase
Based on our results studied in section 3, to check whether N

vertex-disjoint paths to the sink exist or not, a node needs to know
the number of vertex-disjoint paths available to each neighbor. The
following theorem summarizes the sufficient condition.

THEOREM 4.1. The existence of N vertex-disjoint paths is guar-
anteed if the node has N neighbors with each having at least N +1
vertex-disjoint paths to the sink.

PROOF. Let S be the node that needs to reconstruct its N vertex-
disjoint paths to the sink, as shown in Fig. 14(a). Let v1, v2, · · · ,
vj , · · · , vN be the neighbors of S that have at least N + 1 vertex-
disjoint paths. Then, for any vj , there must exist N vertex-disjoint
paths that do not pass S as shown in Fig. 14(a).

In the following, we construct N vertex-disjoint paths for S step
by step.

• Pick one of v1’s paths, which does not pass any of v2, · · · ,
vj , · · · , vN . There must exist such a path because it is im-
possible for N vertex-disjoint paths sharing N − 1 nodes.
The concatenation of this path and the edge between S and
v1 forms the first path for S, as shown in Fig. 14(b). And this
path does not pass any of v2, · · · , vj , · · · , vN .

• Pick two of v2’s paths, which do not pass any of v3, · · · , vj ,
· · · , vN , as shown in Fig. 14(c). According to Theorem 3.2,
there exist two vertex-disjoint paths between S and T .

• · · ·
• Pick j of vj’s paths, which do not pass any of vj+1, · · · , vN ,

as shown in Fig. 14(d). Based on Theorem 3.2, there exist j
vertex-disjoint paths between S and T .
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Figure 14: The procedure of constructing N vertex-disjoint
paths.

• · · ·
• Pick N paths from vN ’s paths, as shown in Fig. 14(e). Based

on Theorem 3.2, there exist N vertex-disjoint paths between
S and T .

Therefore, the claim is true.

This checking is simple, and its cost is O(1). If the node has
passed the checking, it can go to the reconstruction phase. Other-
wise, the node can either move to a new location (for mobile nodes)
with the hope of passing the checking, or force an reconstruction
immediately because the condition is not necessary. For a node that
just deployed to the network, the following corollary can be derived
from the proof of Theorem 4.1.

COROLLARY 4.1. The existence of N vertex-disjoint paths is
guaranteed if the newly-deployed node has N neighbors that have
at least N vertex-disjoint paths.

The above two simple checking methods only request the node
to be aware of the number of vertex-disjoint paths of its neighbors.
It is not necessary for the node to know any other information, such
as the details of the vertex-disjoint paths. Therefore, the checking
methods can be applied to any protocol mentioned in Section 2.

When source routing is adopted, we can obtain stronger suffi-
cient conditions to check the availability of N vertex-disjoint paths.
Assume the node S has M vertex-disjoint paths with M < N al-
ready. We can derive the following corollary based on the proof of
Theorem 4.1.

COROLLARY 4.2. The existence of N vertex-disjoint paths is
guaranteed if the node S has N −M neighbors with each having
at least N + 1 vertex-disjoint paths and none of them appearing in
the M vertex-disjoint paths of S.

We can obtain an even stronger condition if the node’s neighbors
can announce the number of vertex-disjoint paths that do not pass
this node.

COROLLARY 4.3. The existence of N vertex-disjoint paths is
guaranteed for S if S has N − M neighbors with none of them
passing the M available paths of S and each having at least N
vertex-disjoint paths that do not pass S.

The nodes that have found N vertex-disjoint paths should know
its next-hop neighbors serving as relays. Therefore we obtain the
following corollary based on the proof of Theorem 4.1, Lemma
3.10 and Corollary 4.3.

COROLLARY 4.4. The existence of N vertex-disjoint paths is
guaranteed for S if S has N − M neighbors with none of them
passing the M available paths of S and each having at least N
vertex-disjoint paths that either do not pass S or S is the first relay
node in one of the paths.

This is an interesting result. It indicates that S can get rewarded
from others it has helped. This means that each node should help
others in order to get support for its own route maintenance. This
results can be applied to other applications such as P2P download.

4.2 Reconstructing Phase
In general, all the existing methods mentioned in section 2 can

be employed in this phase. When source routing is adopted, there
exist two efficient reconstructing methods for a node that passes
the checking phase. In the first method, the node collects vertex-
disjoint path information from N −M neighbors with each having
at least N vertex-disjoint paths to the sink, and then employs either
max-flow algorithm or Omvdp algorithm (introduced in section 3
for proofing the theoretical results) to reconstruct its own N vertex-
disjoint paths. In the second method, the node first broadcasts its
available vertex-disjoint path information to all neighbors when the
number of available vertex-disjoint paths is N − 1. Then its neigh-
bors check whether N vertex-disjoint paths exist or not based on
Theorem 3.5 and Lemma 3.10. If the answer is positive, the neigh-
bors can either compute N vertex-disjoint paths for the node or no-
tify the node of the existence to let the node make the decision on
which neighbor it shall rely on. Note that the node does not need to
flood RREQs and waits for the sink’s response in both reconstruc-
tion methods. Therefore network performance could be improved
because the information collection is restricted to selected neigh-
bors, which lead to less interference comparing with the flooding of
RREQs. In addition, network resources can be conserved because
only the selected nodes participate in the reconstruction. Note that
a node could still try the two reconstruction methods first instead
of flooding RREQs to the network even it fails the checking.

When source routing is not available and the node passes the
checking phase, the node can send RREQs to the selected neighbors
that are guaranteed to be helpful. This also reduces the resource
consumption.

5. DISCUSSION

5.1 Existence Checking Problem
The checking phase we proposed in section 4 can be treated as

a complement to the classic max-flow solution. Let’s take a look
at the following example. Given m × m grids representing the
possible deployment points for a node v, finding a deployment grid
for v such that there exist at least N multipaths to the sink nodes
from v. For this problem, the best known max-flow algorithm has
a time complexity of O(m2n) since it needs to be fired m × m
times in the worst case. On the other hand, the checking phase
reduces the time complexity to O(m2)+O(n) if a positive answer
is returned. Note that the checking may not guarantee to identify
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a deployment grid that supports N multipaths, even though there
exists such a grid for v, since it is based on a sufficient condition.

This example motivates us to study the following general Exis-
tence Checking Problem.

Given a problem that can be solved or reported as unsolvable
for an input in O(M) time, does there exist a method that can suf-
ficiently and necessarily check the existence of a solution for any
input in O(N) time with O(M) > O(N), such that the complexity
of finding an input that guarantees the solvability of the problem
can be reduced?

The above problem has many practical applications. Neverthe-
less, we conjecture that it is impossible to get a necessary and suf-
ficient checking procedure that can reduce the time complexity.

5.2 Unified Geometric Localization and Mul-
tipath Construction

Location information is critical to many network applications [].
Generally speaking, a to-be-localized node needs to have range
(distance) information toward at least (d+1) beacons in order to be
uniquely localized in d-dimensional space via a procedure termed
(d + 1)-lateration localization. A node becomes a beacon when-
ever its position information is available. In [1], we have identified
the following sufficient and necessary condition for a node to be
localisable:

LEMMA 5.1. A node v can be localized by (d + 1)-lateration
localization method in d-dimensional space, if and only if v has
at least (d + 1) vertex disjoint paths to (d + 1) distinct beacons,
and each of the nodes in v’s paths also has at least (d + 1) vertex
disjoint paths to (d + 1) distinct beacons.

Notice that if we treat a to-be-localized node as a newly-deployed
node, and all the relevant beacons as a virtual sink3, then the fol-
lowing result can be obtained from Corollary 4.1 and Lemma 5.1.

THEOREM 5.1. If a node v can be localized by a (d + 1)-
lateration localization method in d-dimensional space, then there
exist (d + 1) vertex-disjoint paths from v to the sink node.

Considering a sensor network whose initial beacons are sinks
and/or one-hop neighbors of the sink nodes, based on Theorem 5.1,
any (d+1)-lateration localization procedure implies the availability
of a (d + 1) multipath routing topology. In other words, the proce-
dure of localizing a d-dimensional network via a (d + 1)-lateration
localization method constructs (d+1) vertex-disjoint paths for any
localizable node to the sink. However, the existence of (d + 1)
vertex-disjoint paths for a node can not guarantee localizability of
the node, as illustrated by the counterexample shown in [2]. This is
consistent with Theorem 5.1, which provides a sufficient condition.

6. CONCLUSION AND FUTURE WORKS
In this paper we study the problem of route recovery in node-

disjoint multipath routing for many-to-one sensor networks. We
identify the sufficient conditions under which multipaths can be re-
covered. We propose a route recovery framework consisting of a
constant-time checking phase and a reconstruction phase. When
multipath source routing is adopted, the checking is much stronger
and the reconstruction is much more efficient. Our research pro-
vides help for route recovery, for data source relocation, and for
newly-deployed sensors to construct the required multipaths.

As a future research, we will leverage on the sufficient conditions
identified in this paper to design efficient node-disjoint multipath
3Since all relevant beacons play exactly the same role in localizing
the to-be-localized node, they are jointly treated as a virtual sink.

routing protocols for general ad hoc and sensor networks, with the
objectives of resource management and security enhancement.
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